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Abstract. Stenosis is a blockage caused by atherosclerosis literally lead to serious circulatory 
complaints, by narrowing the vessel wall and causing an alternation in the flow structure which 
consequently reduced the fluid flow passing to the other organs and tissues. This study, the 
geometry of the bifurcated is considered with presence of stenosis at mother and daughter 
artery. The blood vessel is modelled as a two-dimensional (2D) rigid wall since the wall of a 
disease artery is reported to be less compliant. The blood will be assumed as incompressible, 
laminar, steady and characterized as the generalized power-law model. Simulation result is 
obtained by using COMSOL Multiphysics 5.2, a software based on the FEM to solve the problem. 
Results concerning the effect of different blood rheology and severity of stenosis on the 
streamlines pattern are discussed. 
Keywords: Stenosis, Generalized Power Law, 3D, Bifurcated artery and COMSOL Multiphysics. 
 

INTRODUCTION 

Cardiovascular disease is common problem of the cardiovascular system where it is 
leading cause of death. Coronary artery disease is caused by atherosclerosis which happens due 
to stenosis which formed as a result of fatty substances, cholesterol, cellular waste products, and 
smooth muscle cells accumulation in the artery wall, Zaman (2015). This progressive abnormal 
narrowing can happen at daughter and mother lumen arteries. Stenosis is a localize plaque that 
cause the vessel wall narrowed and causing a alternations in the flow structure which 
consequently reduced the fluid flow passing to the other organs and tissues, Rabby et.al (2014). 

Numerous previous studies on blood flow with stenosis in a single artery have been 
conducted such as Jahangiri et al (2015), Rabby et al (2015) and Sharma et al (2016). While in 
some investigations of stenosed bifurcation artery has been done by Bose and Banerjee (2015), 
Liza et al (2017), Srinivasacharya et al (2017). It has been suggested that the geometry of 
bifurcations, junctions and high curvatures of arteries are easily exposed to the atherosclerosis 
formation. The resulting of vortex and recirculation zone arises from the geometry itself and not 
from the pulsatility of the flow was reported by Stroud et al (2002). Lou et al (1993) investigate 
the effect of the non-Newtonian fluid on a pulsatile flow at the aortic bifurcation. They conclude 
that the large and medium bifurcated arteries might possibly lead to a major change in fluid 
loading on artery wall and exposed to either high or low shear stress. As the anatomical 
considerations, two different type of model has been considered in present study regarding to 
(Lefevre, 2000; Pan, 2011; Medina, 2006; Iakovou, 2005) 

Furthermore, it has been confirmed that the Newtonian model is valid only when the 
shear rates is more than 100 s-1 (reciprocal seconds), which have a tendency to occur in big 
arteries only,(Pedley,1980; Berger, 2000). Mostly, the non-Newtonian would be a more accurate 
depiction of blood flow in the arteries, especially for stenosed situations. The significant of 
Newtonian and non-Newtonian blood model such as Carreau model, Walburn-Schneck model, 
power law, Casson model and generalized power law model investigated by (Johnston, 2004). 
The result shows a low central velocity inlet and wall shear stress values of Newtonian model 
are lower than those of non-Newtonian. For high central velocity inlet and wall shear stress 
value of those Newtonian and non-Newtonian are nearly identical. However, the wall shear 
stress of Walburn-Schneck and Power Law are underestimate than those others. Again 
(Johnston, 2006), five non-Newtonian models of blood flow in human right coronary arteries 
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was compared in transient simulation and conclude that the generalized power law model 
approximates wall shear stress relatively small with the Newtonian model for low inlet 
velocities and in regions of low shear. Mandal (2007) considered generalized power law model 
to investigate the influence of the stenoses shape on the characteristics of blood flow.  Sarifuddin 
(2009) studied the shear-thickening and shear-thinning of the generalized power law model in 
an artery with different kinds of stenosis; cosine, smooth-shaped constrictions and irregular 
without any body force. In this study, mainly focus on laminar flow through bifurcated  artery 
with the effect of different location of stenosis on generalized power law model of blood flow in 
a stenosed bifurcated artery. The simulation result is obtained by using COMSOL Multiphysics 
5.2, a software based on the FEM.  

MODEL CONSTRUCTION 

Different classifications of stenosis in artery to define considered lesions have been 
proposed by (Lefevre, 2000; Pan, 2011; Medina, 2006; Iakovou, 2005). TYPE I is model of 
geometry involving stenosis in the mother artery. TYPE II is a model of geometry involving 
stenosis in the mother artery and upper branch of bifurcation. 

  
 

Figure 1. 3D geometry of the mild stenosis (a) at mother artery (TYPE I) and (b) at mother and 
upper branch bifurcation (TYPE II). 

The Governing Equation 

The streaming fluid representing blood in the arterial bifurcation is generally considered 
to be laminar and following the non-Newtonian Generalize Power law characteristic of fluid 
rheology. The governing equation of incompressible flow are given by  
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where   is the strain rate tensor and m is the fluid consistancy coefficent and n is flow 

behaviour index. is the stress tensor, u  is the axial velocity, v  is the radial velocity, y  is the 

radial coordinate and x  is axial coordinate.   denotes the dynamic viscosity of blood,   is the 

density of blood, p  is the pressure distribution acting on the surface. 

Boundary Conditions 

At the inlet, a parabolic velocity profile is imposed as:  
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No-slip conditions along all the arterial walls: 

( ) ( ) ( ), ,   , , , ,  0u x y z v x y z w x y z= = =  
 

A traction-free condition is applied at the outlet which can be stated as 

( ) 0,p − +  =n  
   

(13) 
where n represents a unit outward normal vector with the pressure point constraint, 0p =  

being implemented at 0x =  and 0.5y = . 

3D Computational Mesh 

All computations were performed on a personal computer running 64 bit Windows 8 with 
speed of 1.70GHz and a RAM of 9.89GB. The geometry was drawn by means of the built-in CAD 
tools. Then the built-in meshing function was used to generate unstructured triangular elements 
of the model. Several attempt of mesh are perform in COMSOL Multiphysics to ensure the results 
obtained were not depended on the mesh parameters, see Figure 2 and Figure 3. The number of 
domain elements and maximum velocity computed using COMSOL Multiphysics in present study 
are summarised in Table 1 and Table 2. 

Based on the mesh dependency test demonstrated from Table 1 and Figure 4, 
maximum velocity in range between Mesh 2 and Mesh 3 for TYPE I are nearly identical with 
slightly different of 0.00002m/s with domain element 719672 and 752913 respectively. 
Followed with TYPE II, maximum velocity in range between Mesh 3 and Mesh 4 are nearly 
identical with 0.00002 m/s with domain element 792489 and 866232 respectively. In order 
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to reduce computational time, mesh 2 and mesh 3 for TYPE I and YPE II respectively, is 
selected in order to provide a satisfactory solution to our problem. 

Table 1. Mesh parameters for TYPE I and TYPE II. 

Model Parameter Domain elements Maximum velocity (m/s) 
 Mesh 1 604930 0.23586  

TYPE I Mesh 2 719672 0.23598  

 Mesh 3 752913 0.23600  

 Mesh 4 865680 0.23634  

 Mesh 1 653346 0.40899  

TYPE II Mesh 2 710968 0.40795  

 Mesh 3 792489 0.40959  

 Mesh 4 866232 0.40961  

 

 

Figure 2. Different unstructured triangular mesh elements. 

 

Figure 3. Different unstructured triangular mesh elements. 
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(a) 0.0125x = m 

 
(b) 0.0350x = m 

Figure 4. The axial velocity of 3D geometry for, a) TYPE I, and b) TYPE II 

The Constriction of Stenosis 

The occlusion is determined by the total blocked of the cross sectional where commonly 
defined as the ‘throat’ or constriction of the blockage. Referring Figure 6.5, the initial radius of 
the mother artery, 0.0075.a =  Let 0.4a = and 0.55a =  are the positive constant controlling 
the degree of stenosis constriction for both geometry TYPE I and TYPE II.  
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Figure 5: The geometry showing the degree of constriction at mother artery. 

Model Validation 

For the purpose of mesh dependency test and validation, geometry is used and 

constructed based on model proposed by Chakravarty (1995) and Zain (2017). Let ( , )x y  be 

the coordinates of a material point. 
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where ( )1R x  and ( )2R x  represent the radii of the outer and inner wall, respectively. Meanwhile, 

a  and 1r  are the respective radii of the mother and daughter artery. 0r  and '

0r  are the radii of 

curvature for the lateral junction and the flow divider, respectively. Whereas, 0l  is the length of 

the stenosis at a distance d  from the origin. Location of the onset and offset of the lateral 

junction are denoted by 1x  and 2 ,x  respectively. 3x  indicated as the apex, m  represents the 

maximum height of stenosis occur at 0 6d l+  and 
05 6d l+  while   denote half of the 

bifurcation angle. Parameters involved in the above expressions may be given as 

 ( )'

2 1 0 0 1 0 3 2sin ,  ( 2 sec / (cos 1),  sin 1 sinx x r r a r r x x= +  = − )  − = −   −    

( )'

3 2 1 4 3 0,  2 sin 1 sin .x x q s r x x r= + =  = + −   

The dimensional data for validation purpose has been made use from (Chakravarty, 1997; Zain, 
2017): 

0.0075m,a =
0 0.015m,l =  0.005m,d =  

max 0.06m,x = 1 0.025m,x = -31050kgm , = -10.0035Pas , = 30 , = 0.002m,q =
1 0.51 ,r a=

0 0.015ml = ,  0.005m,d =
max 0.06m,x =  

1 0.025m.x =  

Same procedure of meshing is applied in validation process to compute the 2D arterial 
bifurcation by considering blood as Newtonian. Several attempts of mesh have been made, 
see figure 6. The number of domain elements computed using COMSOL Multiphysics in 
present study are summarized in Table 3 followed together with its maximum velocity and 
coordinate. Table 2 consists of the respective maximum velocity obtained from COMSOL 
Multiphysics and Matlab from Zain (2017) together with its coordinate. From the outcome, 
both results obtained agreed well with each other with a very small difference recorded 
approximately 0.00043 m/s for the maximum velocity. 
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Figure 6. Different unstructured triangular mesh elements. 

 

Figure 7. Velocity profiles with 40% of severity stenosis at  0.0125mx = . 

Table 3. Comparison of maximum velocity and their coordinate 

Software Maximum velocity (m/s) Coordinate ( ),x y  

COMSOL Multiphysics 0.13118   ( )50.019154,3.0259 10−   

Matlab, Zain (2017) 0.13161  ( )50.015, 2.6418 10−  

RESULTS AND DISCUSSION 

The governing equation (1)-(4) mentioned above were solved by using the commercial 
software package, COMSOL Multiphysics 5.2. Computational has been done on computer running 
64-bit Window 8.1 with speed of 1.60GHz and RAM of 4.00GB.  The numerical computations 
have been performed in order to visualize the streamlines with different type of blood rheology 
and severity of stenosis.  

Mesh 1 Mesh 2 

Mesh 3 Mesh 4 
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The influence of different type of blood rheology for TYPE I on the flow recirculation zones 
are illustrated on Figure 8 and Figure 9 for severity of 40% and 55% respectively. Overall, 
interesting to note that the recirculation zone appears at the offset of the stenosis near the upper 
and lower outer wall of artery. Clearly the reversed flow of the vortex reaches the edge of 
stenosis, it is unable to follow the curve of stenosis and to move away from the stenosis by 
changing its direction at the same time. To further visualize and understanding of the blood 
behavior, obviously that the recirculation zones are found to increase in sizes from shear-

thinning 0.639n = , Newtonian model 1n = , to shear-thickening 1.2n = rheological. Among 
these three fluids, shear-thickening fluid moves faster and possesses a higher momentum. It is 
difficult for the same fluid layer to remain attached to suddenly changing geometry and 
expanding wall, thus exhibits a more predominant vortex along the outer wall. In fact, this result 
has good agreement with the experimental findings by Ahmed (1983) and the theoretical results 
in Middleman (1995) and Mustapha (2010). The increment of stenosis occlusion clearly give 
considerable effects on streaming blood where the size of recirculation became bigger as the 
degrees of occlusion increases. The flow reversal and recirculation zones are formed which 
might exposed an individual to a worsening effect of cardiovascular diseases. 

 
(a) n=0.639 

 
 

(b) n=1 

 
 

(c) n=1.2 

Figure 8. (a) 3D Streamline pattern for 40% occlusion of mother artery for different type of 
blood rheology. 
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(a) n=0.639 

 
 

(b) n=1 

 
 

(c) n=1.2 

Figure 9. (a) 3D Streamline pattern for 55% degrees occlusion of mother artery for different 
type of blood rheology. 

The influence of different type of blood rheology for TYPE II on the flow recirculation 
zones are illustrated on Figure 10 and Figure 11 for severity of 40% and 55% respectively. The 
reversal flow are formed at the offset of stenotic region in the mother artery and downstream of 

bifurcation and getting larger from shear-thinning 0.639n = , Newtonian model 1n = , to shear-

thickening 1.2n = rheological. In fact, with clearer picture as in Figure 10 and Figure 11, for 
each severity indicates that the recirculation zones are found to increase in sizes as the stenosis 
continue to enlarge. This increment cause the recirculation zone to elongate along the outer wall 
of daughter artery. Clearly from Figure 11 shows that a noticeable streamline pattern after pass 
through the throat of daughter artery, start to moving upward reaching the outer wall in which 
result of the big recirculation at the offset of the stenosis near the inner wall of artery . The 
recirculation near outer wall of bifurcated artery reducing in size and increasing the size near 

inner wall from shear-thinning 0.639n = , Newtonian model 1n = , to shear-thickening 

1.2n = rheological 
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(a) n=0.639 

 
(b) n=1 

 
(c) n=1.2 

Figure 10. (a) 3D Streamline pattern for 40% occlusion of mother artery for different type of 
blood rheology. 

 
(a) n=0.639 
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(b) n=1 

 
(c) n=1.2 

Figure 11. (a) 3D Streamline pattern for 55% occlusion of mother artery for different type of 
blood rheology. 

CONCLUSION 

In this work, the investigation of development three-dimensional mathematical model of 
steady flow in stenotic artery focused on the two type of models. The  geometries proposed for 
TYPE I and TYPE II with each location of stenosis imposed in computational models have 
considerable impact on streamlines pattern. The flow of the blood has been governed by non-
Newtonian of the streaming blood together with the effects of severity of stenosis.The non-
Newtonian has been characterized by the generalized power-law model. The numerical 
computation is done using COMSOL Multiphysic 5.2. The effects of stenosis severity, different 
type of blood rheology and location of stenosis on streamlines pattern are approximated 
quantitatively. Based on the analyzation made, it can be observed that as the severity of the 
stenoses increases,  the streamlines shown a abnormal behaviour where recirculation occur as 
the stenosis severity increases. 
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